Optimal Independent Spanning Trees on Cartesian Product of Hybrid Graphs

نویسندگان

  • Jinn-Shyong Yang
  • Jou-Ming Chang
چکیده

A set of k spanning trees rooted at the same vertex r in a graph G are called independent spanning trees (ISTs) if for any vertex x 6= r, the k paths from v to r, one path in each tree, are internally disjoint. The design of ISTs on graphs has applications to fault-tolerant broadcasting and secure message distribution in networks. It was conjectured that for any k-connected graph there exist k ISTs rooted at any vertex of the graph. The conjecture has been proved true for k-connected graphs with k 6 4, and remains open otherwise. In this paper, we deal with the problem of constructing ISTs on Cartesian product of a sequence of hybrid graphs including cycles and complete graphs. Consequently, this result generalizes a number of previous works. Keyword: independent spanning trees; Cartesian product; fault-tolerant broadcasting;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Completely Independent Spanning Trees in Some Regular Graphs

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees of a graph G. If for any pair of vertices (u, v) of V (G), the paths from u to v in each Ti, 1 ≤ i ≤ k, do not contain common edges and common vertices, except the vertices u and v, then T1, . . . , Tk are completely independent spanning trees in G. For 2k-regular graphs which are 2k-connected, such as the Cartesian product of a compl...

متن کامل

Completely Independent Spanning Trees in Some Regular Networks

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees of a graph G.If for any pair of vertices (u, v) of V (G), the paths from u to v in each Ti,1 ≤ i ≤ k, do not contain common edges and common vertices, except thevertices u and v, then T1, . . . , Tk are completely independent spanningtrees in G. For 2k-regular graphs which are 2k-connected, such as theCartesian pro...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

Number of Spanning Trees for Different Product Graphs

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. J.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2014